If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2=22-14k
We move all terms to the left:
k^2-(22-14k)=0
We add all the numbers together, and all the variables
k^2-(-14k+22)=0
We get rid of parentheses
k^2+14k-22=0
a = 1; b = 14; c = -22;
Δ = b2-4ac
Δ = 142-4·1·(-22)
Δ = 284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{284}=\sqrt{4*71}=\sqrt{4}*\sqrt{71}=2\sqrt{71}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{71}}{2*1}=\frac{-14-2\sqrt{71}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{71}}{2*1}=\frac{-14+2\sqrt{71}}{2} $
| 1/2y+4=18 | | -13.9n+8.06+16.9n=-18.13+0.3n | | 3f-6=-2f-11 | | 8k2+6k−4=0 | | -2g+3=3g-7 | | 8d+12=6d-4 | | y^2-67=-67 | | 1/9x+2=11 | | 92=(11x-4)+x | | m=-16m+17 | | 18(3d−2)=14(d+5) | | A=40+7x | | k^2+29=0 | | 25/2=x+3 | | 18u-14u-4=-20+3u | | p^2=20 | | (7x-1)+(8x+8)+X=180 | | 2.5x-2=-5.7x=6 | | 3-5y=-8y+3 | | d^2+42=-40 | | -m-7=9+m | | 6x+x/4=100 | | 8-2-8h=-4-7h | | k^2+19=83 | | x+(-18)=34 | | 5k=39 | | 12x=13x-8 | | 9+3j=-6j | | 8x-38=360 | | A=7x+49 | | 45(4x+1)=180 | | -8n-4=-4n+8 |